4.6 Article

Sampling of Gas-Phase Intermediate Pyrolytic Species at Various Temperatures and Residence Times during Pyrolysis of Methane, Ethane, and Butane in a High-Temperature Flow Reactor

期刊

SUSTAINABILITY
卷 15, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/su15076183

关键词

hydrocarbon fuel; pyrolysis; high-temperature sampling; PAH precursors; benzene ring; soot formation

向作者/读者索取更多资源

Air pollution in cities poses a threat to public health and the environment. Particulate emissions containing toxic polyaromatic hydrocarbons (PAHs) contribute to this pollution. The study investigates the decomposition of methane, ethane, and butane fuels and the subsequent formation of aromatic rings, providing insights for reducing PM formation.
Air pollution in many major cities is endangering public health and is causing deterioration of the environment. Particulate emissions (PM) contribute to air pollution as they carry toxic polyaromatic hydrocarbons (PAHs) on their surface. Abatement of PM requires continuous strict emission regulation and, in parallel, the development of fuels with reduced formation of PM. Key processes in the formation of PM are the decomposition of hydrocarbon fuels and the synthesis of potential precursors that lead to the formation of benzene rings and thereafter growth to PAHs and eventually PM. Methane, ethane and butane are important components of natural gas and liquefied petroleum gas, and are also widely used in transportation, industrial processes and power generation. This paper reports on a quantitative investigation of the intermediate gaseous species present during pyrolysis of methane, ethane and butane in a laminar flow reactor. The investigation aimed to further the understanding of the decomposition process of these fuels and the subsequent formation of aromatic rings. The pyrolysis of methane, ethane and butane were carried out in a tube reactor under laminar flow conditions and within a temperature range of 869-1213 degrees C. The fuels were premixed in nitrogen carrier gas at a fixed carbon atom concentration of 10,000 ppm, and were pyrolysed under oxygen-free conditions. Intermediate gaseous species were collected from within the tube reactor at different residence times using a specially designed high-temperature ceramic sampling probe with arrangements to quench and freeze the reactions at entry to the probe. Identification and quantification of intermediate species were carried out using a gas chromatography-flame ionization detector (GC-FID). During methane pyrolysis, it was observed that as the concentration of acetylene increased, the concentration of benzene also increased, suggesting that the benzene ring is formed via the cyclo trimerisation of acetylene. With all three fuels, all intermediate species disappeared at higher temperatures and residence times, suggesting that those species converted into species higher than benzene, for example naphthalene. It was observed that increasing carbon chain length lowered the temperature at which fuel breakdown occurred and also affected the relative abundance of intermediate species.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据