4.6 Article

Prediction of Cooling Load of Tropical Buildings with Machine Learning

期刊

SUSTAINABILITY
卷 15, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/su15119061

关键词

cooling load; building; predictive modelling; energy efficiency

向作者/读者索取更多资源

The study aimed to develop models to predict the cooling load of low-rise tropical buildings based on their basic characteristics. Different machine learning algorithms were tested and the results showed that Histogram Gradient Boosting and Stacking models were the most accurate for predicting the cooling load.
Cooling load refers to the amount of energy to be removed from a space (or consumed) to bring that space to an acceptable temperature or to maintain the temperature of a space at an acceptable range. The study aimed to develop a series of models and determine the most accurate ones in the prediction of the cooling load of low-rise tropical buildings based on their basic architectural and structural characteristics. In this context, a series of machine learning (regression) algorithms were tested during the research to determine the most accurate/efficient prediction model. In this regard, a data set consisting of ten features indicating the basic characteristics of the building (floor area, aspect ratio, ceiling height, window material, external wall material, roof material, window wall ratio north faced, window wall ratio south faced, horizontal shading, orientation) were used to predict the cooling load of a low-rise tropical building. The dataset was generated utilizing a set of generative and algorithmic design tools. Following the dataset generation, a series of regression models were tested to find the most accurate model to predict the cooling load. The results of the tests with different algorithms revealed that the relationship between the predictor variables and cooling load could be efficiently modeled through Histogram Gradient Boosting and Stacking models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据