4.6 Article

Application of Artificial Intelligence Model Solar Radiation Prediction for Renewable Energy Systems

期刊

SUSTAINABILITY
卷 15, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/su15086973

关键词

solar energy; modeling and forecasting; deep learning; artificial intelligence

向作者/读者索取更多资源

Solar power is an excellent alternative energy source that can reduce our dependence on nonrenewable and destructive fossil fuels. Accurate prediction of solar radiation is important for the development of solar energy. Lack of access to reliable data can severely impact the deployment and performance of solar energy systems.
Solar power is an excellent alternative power source that can significantly cut our dependency on nonrenewable and destructive fossil fuels. Solar radiation (SR) can be predicted with great precision, and it may be possible to drastically minimize the impact cost associated with the development of solar energy. To successfully implement solar power, all projects using solar energy must have access to reliable sun radiation data. However, the deployment, administration, and performance of photovoltaic or thermal systems may be severely impacted by the lack of access to and the ambiguity of this data. Methods for estimating and predicting solar radiation can help solve these problems. Prediction techniques can be put to use in the real world to, for example, keep the power grid functioning smoothly and ensure that the supply of electricity exactly matches the demand at all times. Recently developed forecasting methods include the deep learning convolutional neural networks combined with long short-term memory (CNN-LSTM) model. This study provides a comprehensive examination of meteorological data, along with the CNN-LSTM methods, in order to design and train the most accurate SR forecasting artificial neural network model possible. Weather data was collected from a NASA meteorological station that included details such as the current temperature, the relative humidity, and the speed of the wind. This research revealed that SR is highly correlated with both temperature and radiation. Furthermore, the findings demonstrated that the CNN-LSTM algorithm outperformed the other algorithm-trained models, as evidenced by the performance score of the respective models, with a maximum coefficient determination (R-2) > 95% and a minimum mean square error (MSE) of 0.000987 at the testing step. In comparison with different existing artificial intelligence models, the CNN-LSTM model outperformed the other models. These scenarios demonstrated that a basic implementation of CNN-LSTM can be used to supplement conventional methods for predicting SR, provide possibilities to monitor radiation at a low cost, and encourage the adoption of data-driven management.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据