4.6 Article

Enhancing Drought Tolerance in Wheat Cultivars through Nano-ZnO Priming by Improving Leaf Pigments and Antioxidant Activity

期刊

SUSTAINABILITY
卷 15, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/su15075835

关键词

seed priming; morphology; leaf pigments; antioxidant; nutrient analysis; zinc oxide; drought stress; wheat

向作者/读者索取更多资源

Climate change and global warming have led to the need for biologically viable drought-mitigation strategies in wheat cultivation. This study tested two wheat cultivars subjected to different doses of ZnO nanoparticles before sowing. The results showed that ZnO nanoparticles, particularly at a 120 ppm dose under 100% field capacity, improved the growth and mineral contents of the wheat cultivars, making it a potential recommendation for wheat growers.
Climate change, global warming, stagnant productivity of wheat and food security concerns owing to frequent spells of drought stress (DS) have necessitated finding biologically viable drought-mitigation strategies. A trial was conducted to test two promising wheat cultivars (Ujala-16 and Zincol-16) that were subjected to pre-sowing priming treatments with different doses of ZnO nanoparticles (NPs = 40, 80, 120 and 160 ppm) under 50% and 100% field capacity (FC) conditions. The ZnO NPs were prepared with a co-precipitation method and characterized through X-ray diffraction (XRD) and with a scanning electron microscope (SEM). For comparison purposes, untreated seeds were sown as the control treatment. The response variables included botanical traits (lengths, fresh and dry wrights of root and shoot), chlorophyll (a, b and total) contents, antioxidant and proline contents and nutrients status of wheat cultivars. The results showed that DS significantly decreased all traits of wheat cultivars, while ZnO NPs, especially the 120 ppm dose, remained superior by increasing all botanical traits at 100% FC. In addition, ZnO NPs increased the chlorophyll a (1.73 mg/g FW in Ujala-16 and 1.75 mg/g FW in Zincole-16) b (0.70 mg/g FW in Ujala-16 and 0.71 mg/g FW in Zincole-16) and total chlorophyll content (2.43 mg/g FW in Ujala-16 and 2.46 mg/g FW in Zincole-16) by improving the activity of antioxidant and proline content. Moreover, plant nutrients such as Ca, Mg, Fe, N, P, K, and Zn contents were increased by ZnO NPs, especially in the Zincol-16 cultivar. To summarize, Zincol-16 remains superior to Ujala-16, while ZnO NPs (120 ppm dose under 100% FC) increases the growth and mineral contents of both wheat varieties. Thus, this combination might be recommended to wheat growers after testing further in-depth evaluation of more doses of ZnO NPs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据