4.8 Article

Reconstructing fast ion transport channels of Zn3V2O7 (OH)2.2H2O to realize enhanced Zn2+storage performance

期刊

NANO ENERGY
卷 110, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.nanoen.2023.108336

关键词

Bridging oxygen vacancy; Electrochemical in situ conversion; Ion transport channels; Zn ion batteries

向作者/读者索取更多资源

Reconstructed Zn3V2O7 (OH)2.2 H2O (ZVO) with 8% V-O-V bridging oxygen vacancies was prepared to minimize the diffusion energy barrier of Zn2+ in zinc ion batteries. The cathode with 8% V-O-V bridging oxygen vacancies exhibited ultra-high performance of 135 mAh g-1 at 80 A g-1 and long life of 10,000 cycles with an 88% capacity retention at -30 celcius.
Zinc ion batteries attract great attention because of their safety, economy and environmental friendliness. However, the sluggish diffusion kinetics of Zn2+ limit practical application. Here, reconstructed Zn3V2O7 (OH)2.2 H2O (ZVO) is prepared by electrochemical in situ conversion and the bridge oxygen vacancy concentration of V-O-V in ZVO is regulated by adjusting conversion conditions to modulate the ion transport channels. The Zn2+ diffusion energy barrier is minimized (0.20 eV) at a bridge oxygen vacancy concentration of 8%, while more oxygen vacancies hinder the transport of Zn2+ since the channel shrink. Thanks to the reconstructed one-dimensional channels with 8% V-O-V bridging oxygen vacancies, the cathode exhibits ultra-high performance of 135 mAh g-1 at 80 A g-1 and long life of 10,000 cycles with an 88% capacity retention at - 30 celcius.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据