4.6 Article

Triple-Band Surface Plasmon Resonance Metamaterial Absorber Based on Open-Ended Prohibited Sign Type Monolayer Graphene

期刊

MICROMACHINES
卷 14, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/mi14050953

关键词

graphene; tripe-band perfect absorption; polarization independence; incident angle insensitivity; tunable

向作者/读者索取更多资源

This paper introduces a novel metamaterial absorber based on surface plasmon resonance (SPR) that has triple-mode perfect absorption, polarization independence, incident angle insensitivity, tunability, high sensitivity, and a high figure of merit (FOM). The structure of the absorber consists of a graphene array, SiO2 layer, and a gold mirror. The absorber achieves perfect absorption at frequencies of 4.04 THz, 6.76 THz, and 9.40 THz, with absorption peaks of 99.404%, 99.353%, and 99.146%, respectively. It also demonstrates maximum sensitivities in refractive index sensing and has potential applications in photodetectors, optoelectronic devices, and chemical sensors.
This paper introduces a novel metamaterial absorber based on surface plasmon resonance (SPR). The absorber is capable of triple-mode perfect absorption, polarization independence, incident angle insensitivity, tunability, high sensitivity, and a high figure of merit (FOM). The structure of the absorber consists of a sandwiched stack: a top layer of single-layer graphene array with an open-ended prohibited sign type (OPST) pattern, a middle layer of thicker SiO2, and a bottom layer of the gold metal mirror (Au). The simulation of COMSOL software suggests it achieves perfect absorption at frequencies of f(I) = 4.04 THz, f(II) = 6.76 THz, and f(III) = 9.40 THz, with absorption peaks of 99.404%, 99.353%, and 99.146%, respectively. These three resonant frequencies and corresponding absorption rates can be regulated by controlling the patterned graphene's geometric parameters or just adjusting the Fermi level (E-F). Additionally, when the incident angle changes between 0 similar to 50 degrees, the absorption peaks still reach 99% regardless of the kind of polarization. Finally, to test its refractive index sensing performance, this paper calculates the results of the structure under different environments which demonstrate maximum sensitivities in three modes: S-I = 0.875 THz/RIU, S-II = 1.250 THz/RIU, and S-III = 2.000 THz/RIU. The FOM can reach FOMI = 3.74 RIU-1, FOMII = 6.08 RIU-1, and FOMIII = 9.58 RIU-1. In conclusion, we provide a new approach for designing a tunable multi-band SPR metamaterial absorber with potential applications in photodetectors, active optoelectronic devices, and chemical sensors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据