4.6 Article

Full Solutions to Flow and Heat Transfer from Slip-Induced Microtube Shapes

期刊

MICROMACHINES
卷 14, 期 4, 页码 -

出版社

MDPI
DOI: 10.3390/mi14040894

关键词

slip mechanism; new tubular microchannels; elliptical pipes; hydrodynamically developed; thermally developed; heat transfer

向作者/读者索取更多资源

The paper introduces new tubular shapes resulting from the imposition of Navier's velocity slip at the surface. A family of pipes induced by the slip mechanism is discovered, which modifies traditional pipes with elliptical cross-sections and resembles collapsible tubes. The velocity and temperature fields of the new pipes are analytically determined, and physical features such as wall shear stress and convective heat transfer are studied in detail. The new pipes are considered to have engineering and practical value in the micromachining industry.
The main concern of this paper is to introduce some new tubular shapes whose cross-sections result from the imposition of Navier's velocity slip at the surface. A new family of pipes induced by the slip mechanism is thus discovered. The family is shown to modify the traditional pipes with elliptical cross-sections in the absence of slip, and they partly resemble collapsible tubes. The velocity field through the new pipes is then analytically determined. Afterwards, the corresponding temperature field with a constant heat flux boundary is shown to be perturbed around the slip parameter, whose leading order is well known from the literature. The correction to this order is next evaluated analytically. The velocity and temperature fields are further discussed regarding such new shapes. More physical features, such as the wall shear stress, the centerline velocity, the slip velocity and the convective heat transfer are also studied in detail. From the solutions, it is observed that a circular pipe under the effect of a slip mechanism has the largest temperature and the lowest Nusselt number at the center of the modified pipe. The new pipes are thought to have engineering and practical value in the micromachining industry, besides offering new analytical solutions for the considered flow geometry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据