4.8 Article

Metasurface-enabled polarization-independent LCoS spatial light modulator for 4K resolution and beyond

期刊

LIGHT-SCIENCE & APPLICATIONS
卷 12, 期 1, 页码 -

出版社

SPRINGERNATURE
DOI: 10.1038/s41377-023-01202-6

关键词

-

类别

向作者/读者索取更多资源

Liquid crystal on silicon (LCoS) devices provide precise and reconfigurable spatial light modulation, but they suffer from polarization-dependent response. To overcome this limitation, we propose and demonstrate an LCoS device with a polarization-rotating metasurface, achieving high-performance polarization-independent phase modulation. This device offers benefits in terms of configuration simplification and performance improvement for various applications.
With the distinct advantages of high resolution, small pixel size, and multi-level pure phase modulation, liquid crystal on silicon (LCoS) devices afford precise and reconfigurable spatial light modulation that enables versatile applications ranging from micro-displays to optical communications. However, LCoS devices suffer from a long-standing problem of polarization-dependent response in that they only perform phase modulation on one linear polarization of light, and polarization-independent phase modulation-essential for most applications-have had to use complicated polarization-diversity optics. We propose and demonstrate, for the first time, an LCoS device that directly achieves high-performance polarization-independent phase modulation at telecommunication wavelengths with 4K resolution and beyond by embedding a polarization-rotating metasurface between the LCoS backplane and the liquid crystal phase-modulating layer. We verify the device with a number of typical polarization-independent application functions including beam steering, holographical display, and in a key optical switching element - wavelength selective switch (WSS), demonstrating the significant benefits in terms of both configuration simplification and performance improvement.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据