4.7 Article

Titanium biogenic nanoparticles to help the growth of Trichoderma harzianum to be used in biological control

期刊

JOURNAL OF NANOBIOTECHNOLOGY
卷 21, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12951-023-01918-y

关键词

Nanoparticle biosynthesis; Green nanoparticle route; Biological control; Metal oxide nanoparticles; Sclerotinia sclerotiorum; Phytopathogen

向作者/读者索取更多资源

This study successfully synthesized biogenic titanium nanoparticles using the filtrate of the fungus Trichoderma harzianum, which showed potential biological activity against phytopathogens and enhanced the growth of T. harzianum. The nanoparticles inhibited the growth of Sclerotinia sclerotiorum and showed high chitinolytic activity. They were non-toxic to human cells and had a protective effect. The nanoparticles had minimal impact on agricultural microorganisms and did not cause morphological and biochemical changes in soybean plants.
Background The biogenic synthesis of metallic nanoparticles is a green alternative that reduces the toxicity of this nanomaterials and may enable a synergy between the metallic core and the biomolecules employed in the process enhancing biological activity. The aim of this study was to synthesize biogenic titanium nanoparticles using the filtrate of the fungus Trichoderma harzianum as a stabilizing agent, to obtain a potential biological activity against phytopathogens and mainly stimulate the growth of T. harzianum, enhancing its efficacy for biological control.Results The synthesis was successful and reproductive structures remained in the suspension, showing faster and larger mycelial growth compared to commercial T. harzianum and filtrate. The nanoparticles with residual T. harzianum growth showed inhibitory potential against Sclerotinia sclerotiorum mycelial growth and the formation of new resistant structures. A great chitinolytic activity of the nanoparticles was observed in comparison with T. harzianum. In regard to toxicity evaluation, an absence of cytotoxicity and a protective effect of the nanoparticles was observed through MTT and Trypan blue assay. No genotoxicity was observed on V79-4 and 3T3 cell lines while HaCat showed higher sensitivity. Microorganisms of agricultural importance were not affected by the exposure to the nanoparticles, however a decrease in the number of nitrogen cycling bacteria was observed. In regard to phytotoxicity, the nanoparticles did not cause morphological and biochemical changes on soybean plants.Conclusion The production of biogenic nanoparticles was an essential factor in stimulating or maintaining structures that are important for biological control, showing that this may be an essential strategy to stimulate the growth of biocontrol organisms to promote more sustainable agriculture.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据