4.4 Article

Quantum vacuum effects on the formation of black holes

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 6, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP06(2023)055

关键词

Black Holes; Spacetime Singularities

向作者/读者索取更多资源

We study how quantum fields affect the collapse of a thin shell of dust through vacuum polarization and conformal anomaly. The fate of the collapse depends on the physical properties of the shell, and quantum effects can result in the modification of black hole geometry and structure. While most collapses result in a singularity, under certain conditions, a non-singular black hole can be formed, where the collapse stops at a radius larger than the Planck length.
We study the backreaction of quantum fields induced through the vacuum polarization and the conformal anomaly on the collapse of a thin shell of dust. It is shown that the final fate of the collapse process depends on the physical properties of the shell, including its rest and gravitational masses. Investigating the conditions for the formation of black holes, we notice that quantum effects modify the geometry and structure of Schwarzschild space-time in such a way that black holes have two horizons, an inner and an outer horizon. If the gravitational mass of the shell is about that of an ordinary star, then in most cases, the semi-classical collapse will terminate in a singularity, and in general, quantum fluctuations are not strong enough to prevent the creation of the singularity. Although under certain conditions, it is possible to form a non-singular black hole, i.e., a regular black hole. In this way, the collapse stops at a radius much larger than the Planck length below the inner horizon, and the shell bounces and starts an expansion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据