4.7 Article

Genetic dissection of protein and starch during wheat grain development using QTL mapping and GWAS

期刊

FRONTIERS IN PLANT SCIENCE
卷 14, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2023.1189887

关键词

wheat; protein; starch; GMP; QTL mapping; GWAS

向作者/读者索取更多资源

QTL mapping and GWAS on wheat grain development revealed significant associations between 29 unconditional QTLs, 13 conditional QTLs, 99 unconditional marker-trait associations, 14 conditional marker-trait associations, and four quality traits. The study also predicted 28 QTL mapping and 69 GWAS candidate genes related to protein and starch synthesis during grain development.
Protein, starch, and their components are important for wheat grain yield and end-products, which are affected by wheat grain development. Therefore, QTL mapping and a genome-wide association study (GWAS) of grain protein content (GPC), glutenin macropolymer content (GMP), amylopectin content (GApC), and amylose content (GAsC) were performed on wheat grain development at 7, 14, 21, and 28 days after anthesis (DAA) in two environments using a recombinant inbred line (RIL) population of 256 stable lines and a panel of 205 wheat accessions. A total of 29 unconditional QTLs, 13 conditional QTLs, 99 unconditional marker-trait associations (MTAs), and 14 conditional MTAs significantly associated (p < 10(-4)) with four quality traits were found to be distributed on 15 chromosomes, with the phenotypic variation explained (PVE) ranging from 5.35% to 39.86%. Among these genomic variations, three major QTLs [QGPC3B, QGPC2A, and QGPC(S3|S2)3B] and SNP clusters on the 3A and 6B chromosomes were detected for GPC, and the SNP TA005876-0602 was stably expressed during the three periods in the natural population. The QGMP3B locus was detected five times in three developmental stages in two environments with 5.89%-33.62% PVE, and SNP clusters for GMP content were found on the 3A and 3B chromosomes. For GApC, the QGApC3B.1 locus had the highest PVE of 25.69%, and SNP clusters were found on chromosomes 4A, 4B, 5B, 6B, and 7B. Four major QTLs of GAsC were detected at 21 and 28 DAA. Most interestingly, both QTL mapping and GWAS analysis indicated that four chromosomes (3B, 4A, 6B, and 7A) were mainly involved in the development of protein, GMP, amylopectin, and amylose synthesis. Of these, the wPt-5870-wPt-3620 marker interval on chromosome 3B seemed to be most important because it played an important role in the synthesis of GMP and amylopectin before 7 DAA, in the synthesis of protein and GMP from 14 to 21 DAA, and in the development of GApC and GAsC from 21 to 28 DAA. Using the annotation information of IWGSC Chinese Spring RefSeq v1.1 genome assembly, we predicted 28 and 69 candidate genes for major loci from QTL mapping and GWAS, respectively. Most of them have multiple effects on protein and starch synthesis during grain development. These results provide new insights and information for the potential regulatory network between grain protein and starch synthesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据