4.7 Article

Effects of arbuscular mycorrhizal fungus inoculation on the growth and nitrogen metabolism of Catalpa bungei CAMey. under different nitrogen levels

期刊

FRONTIERS IN PLANT SCIENCE
卷 14, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2023.1138184

关键词

woody plant; Rhizophagus intraradices; growth characteristics; physiological performance; nitrogen nutrition; gene expression

向作者/读者索取更多资源

Evidence suggests that arbuscular mycorrhizal fungi (AMF) may promote the growth of woody plants. This study investigated the effects of AMF inoculation on the growth and N nutrition status of Catalpa bungei under different N levels. The results showed that AMF inoculation could improve the absorption of N and P, enhance photosynthesis, and promote the growth of seedlings under low to medium N levels. AMF also played a role in regulating root growth and N metabolism under medium N levels.
Evidence suggests that arbuscular mycorrhizal fungi (AMF) may promote the growth of woody plants. However, the effects of AMF on nitrogen (N) metabolism in plants, especially trees, and its regulatory mechanism are rarely reported. Here, the effects of AMF inoculation on the growth and N nutrition status of Catalpa bungei under different N levels were reported. Three N levels (low, medium, high) and two mycorrhizal inoculation treatments (inoculation with Rhizophagus intraradices or not) were used with factorial design. The results showed that medium N could significantly improve the physiological metabolism and growth of C. bungei seedlings. However, when N was excessive, growth was significantly inhibited whether inoculated AMF or not. Compared with non-inoculated treatments, AMF inoculation could promote the absorption of N and P, improve photosynthesis under low to medium N levels, thus promoting the growth of seedlings. AMF changed the biomass allocation in seedlings by reducing the stem mass ratio and root/shoot ratio, and increasing the leaf mass ratio. At medium N levels, compared with non-inoculated treatment, AMF inoculation could significantly promote root growth by changing root hormone levels and improving root architecture and root activity. Under N addition, AMF inoculation could improve the absorption and assimilation of N by regulating the expression of key enzyme genes of N metabolism and nitrate transporter genes (NRT2.4, NRT2.5, NRT2.7) in roots, and enhancing the activities of the key enzyme of N metabolism. This study may provide a reference for the application of AMF in the cultivation and afforestation technology of C. bungei in Northwest China.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据