4.7 Article

Rapid and highly efficient morphogenic gene-mediated hexaploid wheat transformation

期刊

FRONTIERS IN PLANT SCIENCE
卷 14, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2023.1151762

关键词

Triticum aestivum; marker-free transformation; WUSCHEL; morphogenic genes; Agrobacterium - mediated transformation

向作者/读者索取更多资源

Two wheat transformation methods using morphogenic regulator genes, with or without gene excision, have been developed. These methods achieve independent transformation efficiencies of up to 58% and 75%, respectively, and significantly reduce tissue culture duration. The procedures are simplified, less labor-intensive, higher-throughput, and cost-effective.
The successful employment of morphogenic regulator genes, Zm-Baby Boom (ZmBbm) and Zm-Wuschel2 (ZmWus2), for Agrobacterium-mediated transformation of maize (Zea mays L.) and sorghum (Sorghum bicolor L.) has been reported to improve transformation by inducing rapid somatic embryo formation. Here, we report two morphogenic gene-mediated wheat transformation methods, either with or without morphogenic and marker gene excision. These methods yield independent-transformation efficiency up to 58% and 75%, respectively. In both cases, the tissue culture duration for generating transgenic plants was significantly reduced from 80 to nearly 50 days. In addition, the transformation process was significantly simplified to make the procedure less labor-intensive, higher-throughput, and more cost-effective by eliminating the requirement for embryonic axis excision, bypassing the necessity for prolonged dual-selection steps for callus formation, and obviating the prerequisite of cytokinin for shoot regeneration. Furthermore, we have demonstrated the flexibility of the methods and generated high-quality transgenic events across multiple genotypes using herbicide (phosphinothricin, ethametsulfuron)- and antibiotic (G418)-based selections.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据