4.7 Review

The role of phytomelatonin receptor 1-mediated signaling in plant growth and stress response

期刊

FRONTIERS IN PLANT SCIENCE
卷 14, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2023.1142753

关键词

phytomelatonin; PMTR1; growing development; stress response; senescence

向作者/读者索取更多资源

Phytomelatonin is a versatile signaling molecule that regulates plant growth, development, and stress response. The discovery of the phytomelatonin receptor PMTR1 has revolutionized plant research, revealing a receptor-based regulatory strategy. PMTR1 homologs have been identified in various plant species and found to regulate seed germination, stomatal closure, leaf senescence, and stress responses. This article reviews the recent evidence on PMTR1-mediated regulatory pathways in phytomelatonin signaling under environmental stimuli, suggesting a convergent evolution of melatonin recognition in different species based on structural similarity.
Phytomelatonin is a pleiotropic signaling molecule that regulates plant growth, development, and stress response. In plant cells, phytomelatonin is synthesized from tryptophan via several consecutive steps that are catalyzed by tryptophan decarboxylase (TDC), tryptamine 5-hydroxylase (T5H), serotonin N-acyltransferase (SNAT), and N-acetylserotonin methyltransferase (ASMT) and/or caffeic acid-3-O-methyltransferase (COMT). Recently, the identification of the phytomelatonin receptor PMTR1 in Arabidopsis has been considered a turning point in plant research, with the function and signal of phytomelatonin emerging as a receptor-based regulatory strategy. In addition, PMTR1 homologs have been identified in several plant species and have been found to regulate seed germination and seedling growth, stomatal closure, leaf senescence, and several stress responses. In this article, we review the recent evidence in our understanding of the PMTR1-mediated regulatory pathways in phytomelatonin signaling under environmental stimuli. Based on structural comparison of the melatonin receptor 1 (MT1) in human and PMTR1 homologs, we propose that the similarity in the three-dimensional structure of the melatonin receptors probably represents a convergent evolution of melatonin recognition in different species.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据