4.7 Article

Seed endophytic bacterial profiling from wheat varieties of contrasting heat sensitivity

期刊

FRONTIERS IN PLANT SCIENCE
卷 14, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2023.1101818

关键词

heat sensitivity; seed microbiome; culturable; tolerance; metagenomics; bacterial diversity

向作者/读者索取更多资源

Wheat yield can be limited by both biotic and abiotic factors, with heat stress being a major factor. This study investigated the abundance and diversity of wheat seed endophytic bacteria (WSEB) from heat susceptible and heat tolerant varieties. The results showed higher culturable diversity in the heat susceptible variety and higher heat tolerance in the heat tolerant variety. Metagenomic analysis revealed higher bacterial diversity, with predominant phyla including Proteobacteria, Firmicutes, and Actinobacteria. Understanding the functional characteristics of these bacteria can contribute to improving plant growth and productivity for sustainable agriculture.
Wheat yield can be limited by many biotic and abiotic factors. Heat stress at the grain filling stage is a factor that reduces wheat production tremendously. The potential role of endophytic microorganisms in mitigating plant stress through various biomolecules like enzymes and growth hormones and also by improving plant nutrition has led to a more in-depth exploration of the plant microbiome for such functions. Hence, we devised this study to investigate the abundance and diversity of wheat seed endophytic bacteria (WSEB) from heat(S) (heat susceptible, GW322) and heat(T) (heat tolerant, HD3298 and HD3271) varieties by culturable and unculturable approaches. The results evidenced that the culturable diversity was higher in the heat(S) variety than in the heat(T) variety and Bacillus was found to be dominant among the 10 different bacterial genera identified. Though the WSEB population was higher in the heat(S) variety, a greater number of isolates from the heat(T) variety showed tolerance to higher temperatures (up to 55 degrees C) along with PGP activities such as indole acetic acid (IAA) production and nutrient acquisition. Additionally, the metagenomic analysis of seed microbiota unveiled higher bacterial diversity, with a predominance of the phyla Proteobacteria covering >50% of OTUs, followed by Firmicutes and Actinobacteria. There were considerable variations in the abundance and diversity between heat sensitivity contrasting varieties, where notably more thermophilic bacterial OTUs were observed in the heat(T) samples, which could be attributed to conferring tolerance against heat stress. Furthermore, exploring the functional characteristics of culturable and unculturable microbiomes would provide more comprehensive information on improving plant growth and productivity for sustainable agriculture.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据