4.8 Article

Toward a more informative representation of the fetal-neonatal brain connectome using variational autoencoder

期刊

ELIFE
卷 12, 期 -, 页码 -

出版社

eLIFE SCIENCES PUBL LTD
DOI: 10.7554/eLife.80878

关键词

fMRI; fetal-neonatal; functional brain network; deep learning; neurodevelopment; VAE; Human

类别

向作者/读者索取更多资源

Recent advances in functional magnetic resonance imaging have provided new insights into the early-life brain development. However, traditional linear models may not adequately capture the complex and nonlinear trajectories of fetal-neonatal brain development. In this study, we used a deep generative model called variational autoencoder to represent brain activity in a large sample of fetuses and neonates. We demonstrated that this nonlinear model improved the representation of brain maturational patterns and age prediction compared to linear models. The model also revealed distinct functional brain networks.
Recent advances in functional magnetic resonance imaging (fMRI) have helped elucidate previously inaccessible trajectories of early-life prenatal and neonatal brain development. To date, the interpretation of fetal-neonatal fMRI data has relied on linear analytic models, akin to adult neuroimaging data. However, unlike the adult brain, the fetal and newborn brain develops extraordinarily rapidly, far outpacing any other brain development period across the life span. Consequently, conventional linear computational models may not adequately capture these accelerated and complex neurodevelopmental trajectories during this critical period of brain development along the prenatal-neonatal continuum. To obtain a nuanced understanding of fetal-neonatal brain development, including nonlinear growth, for the first time, we developed quantitative, systems-wide representations of brain activity in a large sample (>500) of fetuses, preterm, and full-term neonates using an unsupervised deep generative model called variational autoencoder (VAE), a model previously shown to be superior to linear models in representing complex resting-state data in healthy adults. Here, we demonstrated that nonlinear brain features, that is, latent variables, derived with the VAE pretrained on rsfMRI of human adults, carried important individual neural signatures, leading to improved representation of prenatal-neonatal brain maturational patterns and more accurate and stable age prediction in the neonate cohort compared to linear models. Using the VAE decoder, we also revealed distinct functional brain networks spanning the sensory and default mode networks. Using the VAE, we are able to reliably capture and quantify complex, nonlinear fetal-neonatal functional neural connectivity. This will lay the critical foundation for detailed mapping of healthy and aberrant functional brain signatures that have their origins in fetal life.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据