4.8 Article

Early myelination involves the dynamic and repetitive ensheathment of axons which resolves through a low and consistent stabilization rate

期刊

ELIFE
卷 12, 期 -, 页码 -

出版社

eLIFE SCIENCES PUBL LTD
DOI: 10.7554/eLife.82111

关键词

myelination; oligodendrocytes; ensheathment dynamics; endocytic recycling

类别

向作者/读者索取更多资源

Oligodendrocytes in the central nervous system exhibit variability in sheath number, with each cell initiating a variable number of ensheathments that are resolved through a consistent rate of loss. The repetitive ensheathment of the same axons before stable sheaths are formed is independent of neuronal activity. Disrupting membrane recycling affects the later stabilization phase, increasing the percentage of ensheathment loss.
Oligodendrocytes in the central nervous system exhibit significant variability in the number of myelin sheaths that are supported by each cell, ranging from 1 to 50 (1-8). Myelin production during development is dynamic and involves both sheath formation and loss (3, 9-13). However, how these parameters are balanced to generate this heterogeneity in sheath number has not been thoroughly investigated. To explore this question, we combined extensive time-lapse and longitudinal imaging of oligodendrocytes in the developing zebrafish spinal cord to quantify sheath initiation and loss. Surprisingly, we found that oligodendrocytes repetitively ensheathed the same axons multiple times before any stable sheaths were formed. Importantly, this repetitive ensheathment was independent of neuronal activity. At the level of individual oligodendrocytes, each cell initiated a highly variable number of total ensheathments. However, similar to 80-90% of these ensheathments always disappeared, an unexpectedly high, but consistent rate of loss. The dynamics of this process indicated rapid membrane turnover as ensheathments were formed and lost repetitively on each axon. To better understand how these sheath initiation dynamics contribute to sheath accumulation and stabilization, we disrupted membrane recycling by expressing a dominant-negative mutant form of Rab5. Oligodendrocytes over-expressing this mutant did not show a change in early sheath initiation dynamics but did lose a higher percentage of ensheathments in the later stabilization phase. Overall, oligodendrocyte sheath number is heterogeneous because each cell repetitively initiates a variable number of total ensheathments that are resolved through a consistent stabilization rate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据