4.8 Article

Peripheral and central employment of acid-sensing ion channels during early bilaterian evolution

期刊

ELIFE
卷 12, 期 -, 页码 -

出版社

eLIFE SCIENCES PUBL LTD
DOI: 10.7554/eLife.81613

关键词

ion channels; invertebrates; spiralian; xenacoelomorph; hemichordate; Other

类别

向作者/读者索取更多资源

Nervous systems use ligand-gated ion channels (LGICs) for rapid chemosensation and intercellular signaling. Acid-sensing ion channels (ASICs), a type of LGICs found in vertebrate neurons, emerged earlier than previously thought and were likely an innovation in bilaterian animals. The earliest ASICs were probably expressed in the peripheral nervous system before being incorporated into the brain during the evolution of certain deuterostomes and xenacoelomorphs. The loss of ASICs in certain model organisms can be explained by the loss of peripheral cells in their lineage.
Nervous systems are endowed with rapid chemosensation and intercellular signaling by ligand-gated ion channels (LGICs). While a complex, bilaterally symmetrical nervous system is a major innovation of bilaterian animals, the employment of specific LGICs during early bilaterian evolution is poorly understood. We therefore questioned bilaterian animals' employment of acid-sensing ion channels (ASICs), LGICs that mediate fast excitatory responses to decreases in extracellular pH in vertebrate neurons. Our phylogenetic analysis identified an earlier emergence of ASICs from the overarching DEG/ENaC (degenerin/epithelial sodium channel) superfamily than previously thought and suggests that ASICs were a bilaterian innovation. Our broad examination of ASIC gene expression and biophysical function in each major bilaterian lineage of Xenacoelomorpha, Protostomia, and Deuterostomia suggests that the earliest bilaterian ASICs were probably expressed in the periphery, before being incorporated into the brain as it emerged independently in certain deuterostomes and xenacoelomorphs. The loss of certain peripheral cells from Ecdysozoa after they separated from other protostomes likely explains their loss of ASICs, and thus the absence of ASICs from model organisms Drosophila and Caenorhabditis elegans. Thus, our use of diverse bilaterians in the investigation of LGIC expression and function offers a unique hypothesis on the employment of LGICs in early bilaterian evolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据