4.6 Article

Water-Stable and Photo-Patternable Siloxane-Encapsulated Upconversion Nanoparticles toward Flexible Near-Infrared Phototransistors

期刊

ADVANCED OPTICAL MATERIALS
卷 11, 期 12, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adom.202202469

关键词

flexible electronics; molybdenum disulfide; near-infrared; phototransistors; siloxane; supconversion nanoparticle

向作者/读者索取更多资源

Upconversion nanoparticles (UCNPs) are encapsulated with a siloxane polymer (UCNP@SiOx) through a sol-gel process, enabling water stability and photo-patternability. The UCNP@SiOx demonstrates no significant decrease in upconversion photoluminescence (PL) intensities and PL decay time after immersion in water, and is found to be non-toxic. Integration of UCNP@SiOx with MoS2 phototransistors results in enhanced responsivity and specific detectivity, as well as excellent mechanical durability. This work introduces a facile synthesis method for water-stable and photo-patternable siloxane-encapsulated UCNPs and a strategy for fabricating high-performance flexible NIR phototransistors through wavelength conversion.
Upconversion nanoparticles (UCNPs), as near-infrared (NIR) absorbers, are promising materials for use in flexible NIR photodetectors, which can be applied for wearable healthcare applications due to their advantages in a broad spectral range, high photostability, and biocompatibility. However, to apply UCNPs in wearable and large-area integrated devices, water stability and micro-patterning methods are required. In this work, the UCNPs are encapsulated with a siloxane polymer (UCNP@SiOx) via a sol-gel process to enable photo-patternability and photo-stabililty in water conditions. The UCNP@SiOx can be photo-patterned down to micron-scale feature sizes and exhibit no significant decrease in upconversion photoluminescence (PL) intensities and PL decay time after immersion in water for 2 h. Moreover, UCNP@SiOx is evaluated by an in vitro biocompatibility test and found to be non-toxic. By integrating the UCNP@SiOx with MoS2 phototransistors (MoS2 + UCNP@SiOx), the devices exhibit enhanced responsivity (0.79 A W-1) and specific detectivity (2.22 x 10(7) Jones), which are 2.8 times higher than in the bare MoS2 phototransistors, and excellent mechanical durability over 1000 cycles of 20% compression and re-stretch test. This work opens the way for the facile synthesis of water-stable and photo-patternable siloxane-encapsulated UCNPs and a strategy for fabricating high-performance flexible NIR phototransistors through wavelength conversion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据