4.6 Article

Steric Effects in Ruddlesden-Popper Blue Perovskites for High Quantum Efficiency

期刊

ADVANCED OPTICAL MATERIALS
卷 11, 期 10, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adom.202201824

关键词

blue-emitting perovskites; lattice distortion; spacer engineering; steric effect

向作者/读者索取更多资源

Efficient blue-emitting materials with single-halide RPPs using organic spacer engineering are reported in this study. The (110)-oriented thin films exhibit larger bandgap and enhanced stability, regardless of the choice of spacers, compared to other structures. This new class of RPPs exhibits sky-blue emission at 483 nm with a quantum efficiency of approximately 62%. The established protocol and strategy can be utilized to develop blue perovskite LEDs.
Ruddlesden-Popper perovskites (RPPs) feature enhanced stability compared to their bulk counterparts and attract attention for potential applications in light-emitting diodes (LEDs). However, to date, blue-emitting RPPs rely on halide compositional tuning, resulting in spectral shifts due to halide segregation under photo-/electrical-excitation. Here, efficient blue-emitting materials with single-halide RPPs using organic spacer engineering are reported. Experimental and computational results show that the (110)-oriented thin films exhibit larger bandgap and enhanced stability regardless of the choice of spacers, relative to the (100)-oriented RPPs. The correlation between the lattice structures and optoelectronic properties reveals that this new class of RPPs exhibits sky-blue emission at 483 nm with a quantum efficiency of approximate to 62%. Spearman correlation between the steric size of the spacers and the bandgap is estimated to be 92%, showing that the steric effect is crucial influencers. The protocol and strategy established in this study can be exploited to develop blue perovskite LEDs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据