4.6 Article

Enhanced N2 Activation on a Composite Co3Mo3N Nitride and La0.6Sr0.4Co0.2Fe0.8O3 Perovskite Cathode for High-Temperature Electrochemical Ammonia Synthesis

期刊

ACS SUSTAINABLE CHEMISTRY & ENGINEERING
卷 11, 期 13, 页码 5007-5013

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssuschemeng.2c06520

关键词

nitrogen fixation; ammonia; electrocatalysis; nitride; SOEC

向作者/读者索取更多资源

Electrochemical routes for ammonia synthesis offer benefits such as improved efficiency and compatibility with renewable energy sources. In this study, a composite cathode was fabricated and studied for its ability to produce ammonia through the nitrogen reduction reaction. The composite cathode exhibited significantly enhanced activity compared to pure phase electrodes, and the relevant properties of the composite were characterized through various techniques.
Electrochemical routes for ammonia synthesis could offer improved conversion efficiency, compatible integration with renewable energy sources, and a solution to distributed chemical production. In a conventional Haber-Bosch process, ammonia, NH3, is produced by reacting N2 and H2 at high temperatures and pressures. In an electrochemical pathway, the H2 production and pressurization steps can be bypassed by using N2 and H2O in an ambient-pressure solid-oxide electrolysis cell (SOEC). In this study, a SOEC with a composite cathode of A-site deficient lanthanum ferrite perovskite oxide and transition metal nitride Co3Mo3N was fabricated, and its activity for the nitrogen reduction reaction (NRR) was studied. The composite cathode produced ammonia at a rate of 4.0 x 10-11 mol s-1 cm-2 at 550 degrees C and 0.65 mA/cm2, which was an 8-fold enhancement compared to either of the pure phase electrodes. Relevant properties of Co3Mo3N, such as thermochemical stability, adsorption behavior, and mobility of nitrogen ions, were characterized by various techniques including in situ XRD, XAFS/XANES, NAP-XPS, temperature-programmed experiments, and in situ DRIFTS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据