4.6 Article

Highly Flexible PEDOT Film Assembled with Solution-Processed Nanowires for High-Rate and Long-Life Solid-State Supercapacitors

期刊

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssuschemeng.2c06423

关键词

PEDOT nanowires; oxidative polymerization; thick-film electrode; high-rate performance; supercapacitor

向作者/读者索取更多资源

In this study, highly conductive PEDOT nanowires were prepared and assembled into flexible PEDOT films. The conductivity of the films was found to be dependent on the polymerization time of the nanowires and longer time resulted in a decrease in carrier mobility. The PEDOT films exhibited excellent capacitive performance and electrochemical stability, making them promising for high-rate energy storage devices.
Self-supporting highly conductive polymers are strongly demanded for high-rate flexible supercapacitors. In this work, we demonstrate that solution-processed poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires with tens of micrometers in length can facilely assemble into highly flexible PEDOT films for high-rate supercapacitors. Our results show that the conductivity of the films (50.8-100 S cm(-1)) relies on the polymerization time of the nanowires and longer time favors doping of dodecyl sulfate anions but results in a decrease of carrier mobility from 16.08 to 6.05 cm(2) V-1 s(-1). A specific capacitance of 137 F g(-1) along with 98% capacitance retention after 10 000 cycles has been achieved in 1 M H2SO4. Moreover, due to the favorable ion and electron pathways and rapid pseudocapacitive redox reactions, these PEDOT films exhibit nearly thickness-independent capacitive performance even as the film thickness increases up to 100 mu m. A solid-state capacitor built with a PEDOT film delivers an energy density of 1.38 mWh cm(-3) at 27.9 mW cm(-3). Meanwhile, it also exhibits superior long-term electrochemical stability without obvious capacitance decay and excellent structural integrity under various deformation tests. These outstanding properties demonstrate that the PEDOT nanowires could become one of the promising building blocks for developing flexible electrodes with an interconnected network for future high-rate energy storage devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据