4.6 Article

The Interaction of Aeolian Sand and Slope on Runoff and Soil Loss on a Loess Slope via Simulated Rainfall under Laboratory Conditions

期刊

WATER
卷 15, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/w15050888

关键词

sand cover treatment; slope gradient; critical slope; simulated rainfall

向作者/读者索取更多资源

This study conducted experiments in the wind-water erosion crisscross region and found that the increase of sand cover slope has an impact on runoff and soil loss characteristics. The critical slope of sand-covered slopes is approximately from 23 degrees to 28 degrees, indicating that wind effect is more important than the terrace factor in soil water erosion.
The wind-water erosion crisscross region, where the topography is complicated, is the most severe area of soil erosion on the Loess Plateau. The wind and terrain both have an impact on the soil water erosion process. In order to evaluate the effects of sand cover on runoff and soil loss characteristics, a series of experiments was conducted in two contrasting treatments. One treatment was a bare loess soil slope serving as the control, and the others were sand-covered loess slopes with five different slopes. The results showed that the runoff time, total runoff yield, and total soil loss were different between the sand-covered slope and the loess slope on the slope of 15 degrees. The sediment concentration of the sand-covered slope was significantly higher than that of the loess slope during the entire rainfall process (p < 0.05). The increase in the slope gradient shortened the surface runoff initiation times and enhanced the total runoff volume and soil loss. The total runoff volume and the total soil loss were 39.7 L and 44.3 kg, respectively, on the sand-covered slope of 10 degrees. When the slope gradient increased from 10 degrees to 30 degrees, the total runoff volume and the total soil loss increased by 22.8 L and 42.8 kg, respectively, while the surface runoff initiation times shortened by 300 s. For the sand-covered slopes, the erosion processes appeared to be mainly dominated by sediment transport. The correlation between soil loss rates and slope gradients demonstrated the secondary polynomial function. In addition, the critical slope of sand-covered slopes was from approximately 23 degrees to 28 degrees. The proportion of sand cover and slope responsible for soil erosion was 3:1, which means the wind effect was more important than the terrace factor in terms of soil water erosion in the wind-water erosion crisscross region. The results provide a theoretical basis for soil erosion control in this area.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据