4.7 Article

Study of Candelilla Wax Concentrations on the Physical Properties of Edible Nanocoatings as a Function of Support Polysaccharides

期刊

POLYMERS
卷 15, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/polym15051209

关键词

nanocomposite films; xanthan gum; carboxymethyl cellulose; tensile properties; barrier properties; solid lipid nanoparticles

向作者/读者索取更多资源

Solid lipid nanoparticles (SLN) based on candelilla wax were prepared using the hot homogenization technique. The resulting suspension had monomodal behavior with a particle size of 809-885 nm; polydispersity index < 0.31, and zeta potential of -3.5 mV 5 weeks after monitoring. The effects of temperature, film composition, and relative humidity on the microstructural, thermal, mechanical, and optical properties, as well as the water vapor barrier, were evaluated. Films with 20 g/L of SLN, 30 g/L of glycerol, and 3 g/L of xanthan gum (XG) showed the most appropriate physical properties for packaging and prolonging the shelf-life of fresh foods.
Solid lipid nanoparticles (SLN) based on candelilla wax were prepared using the hot homogenization technique. The resulting suspension had monomodal behavior with a particle size of 809-885 nm; polydispersity index < 0.31, and zeta potential of -3.5 mV 5 weeks after monitoring. The films were prepared with SLN concentrations of 20 and 60 g/L, each with a plasticizer concentration of 10 and 30 g/L; the polysaccharide stabilizers used were either xanthan gum (XG) or carboxymethyl cellulose (CMC) at 3 g/L. The effects of temperature, film composition, and relative humidity on the microstructural, thermal, mechanical, and optical properties, as well as the water vapor barrier, were evaluated. Higher amounts of SLN and plasticizer gave the films greater strength and flexibility due to the influence of temperature and relative humidity. The water vapor permeability (WVP) was lower when 60 g/L of SLN was added to the films. The arrangement of the SLN in the polymeric networks showed changes in the distribution as a function of the concentrations of the SLN and plasticizer. The total color difference (Delta E) was greater when the content of the SLN was increased, with values of 3.34-7.93. Thermal analysis showed an increase in the melting temperature when a higher SLN content was used, whereas a higher plasticizer content reduced it. Edible films with the most appropriate physical properties for the packaging, shelf-life extension, and improved quality conservation of fresh foods were those made with 20 g/L of SLN, 30 g/L of glycerol, and 3 g/L of XG.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据