4.7 Article

Influence of Fabrication Technique on Adhesion and Biofilm Formation of Candida albicans to Conventional, Milled, and 3D-Printed Denture Base Resin Materials: A Comparative In Vitro Study

期刊

POLYMERS
卷 15, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/polym15081836

关键词

3D-printing; CAD; CAM milling; compression flask technique; manufacture technology; candida adhesion; candida biofilm formation; denture stomatitis

向作者/读者索取更多资源

The study aimed to compare the adhesion and biofilm formation of Candida albicans on different denture base materials fabricated conventionally, milled, and 3D-printed. The results showed that 3D-printed dentures had the highest candida biofilm formation, followed by conventionally fabricated dentures, and milled dentures had the lowest candida biofilm formation. The manufacturing technique influenced the surface topography and microbiological properties of the denture base resin material, with additive 3D-printing resulting in increased candida adhesion and rougher surface topography. In a clinical setting, patients wearing additively manufactured maxillary complete dentures are more susceptible to the development of candida-associated denture stomatitis.
The aim of this study was to evaluate the adhesion and biofilm formation of Candida albicans (C. albicans) on conventionally fabricated, milled, and 3D-printed denture base resin materials in order to determine the susceptibility of denture contamination during clinical use. Specimens were incubated with C. albicans (ATCC 10231) for 1 and 24 h. Adhesion and biofilm formation of C. albicans were assessed using the field emission scanning electron microscopy (FESEM). The XTT (2,3-(2-methoxy-4-nitro-5-sulphophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide) assay was used for the quantification of fungal adhesion and biofilm formation. The data were analyzed using GraphPad Prism 8.02 for windows. One-way ANOVA with Tukey's post hoc testing were performed with a statistical significance level set at alpha = 0.05. The quantitative XTT biofilm assay revealed significant differences in the biofilm formation of C. albicans between the three groups in the 24 h incubation period. The highest proportion of biofilm formation was observed in the 3D-printed group, followed by the conventional group, while the lowest candida biofilm formation was observed in the milled group. The difference in biofilm formation among the three tested dentures was statistically significant (p < 0.001). The manufacturing technique has an influence on the surface topography and microbiological properties of the fabricated denture base resin material. Additive 3D-printing technology results in increased candida adhesion and the roughest surface topography of maxillary resin denture base as compared to conventional flask compression and CAD/CAM milling techniques. In a clinical setting, patients wearing additively manufactured maxillary complete dentures are thus more susceptible to the development of candida-associated denture stomatitis and accordingly, strict oral hygiene measures and maintenance programs should be emphasized to patients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据