4.7 Article

Harnessing Data Augmentation and Normalization Preprocessing to Improve the Performance of Chemical Reaction Predictions of Data-Driven Model

期刊

POLYMERS
卷 15, 期 9, 页码 -

出版社

MDPI
DOI: 10.3390/polym15092224

关键词

chemical reaction; retrosynthesis; data augmentation; machine learning; molecular transformer model

向作者/读者索取更多资源

In this study, the molecular transformer model is integrated with data augmentation and normalization preprocessing strategies to accomplish three tasks in chemical reactions. The results demonstrate that the prediction accuracy of the molecular transformer model can be significantly improved with the proposed strategies.
As a template-free, data-driven methodology, the molecular transformer model provides an alternative by which to predict the outcome of chemical reactions and design the route of the retrosynthetic plane in the field of organic synthesis and polymer chemistry. However, in consideration of the small datasets of chemical reactions, the data-driven model suffers from the difficulty of low accuracy in the prediction tasks of chemical reactions. In this contribution, we integrate the molecular transformer model with the strategies of data augmentation and normalization preprocessing to accomplish the three tasks of chemical reactions, including the forward predictions of chemical reactions, and single-step retrosynthetic predictions with and without the reaction classes. It is clearly demonstrated that the prediction accuracy of the molecular transformer model can be significantly raised by the use of proposed strategies for the three tasks of chemical reactions. Notably, after the introduction of the 40-level data augmentation and normalization preprocessing, the top-1 accuracy of the forward prediction increases markedly from 71.6% to 84.2% and the top-1 accuracy of the single-step retrosynthetic prediction with additional reaction class increases from 53.2% to 63.4%. Furthermore, it is found that the superior performance of the data-driven model originates from the correction of the grammatical errors of the SMILES strings, especially for the case of the reaction classes with small datasets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据