4.7 Article

Metal Oxide Nanoparticles Containing Clotrimazole to Suppress Photodegradation of Poly(Vinyl Chloride) Thin Films

期刊

POLYMERS
卷 15, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/polym15071632

关键词

poly(vinyl chloride); ultraviolet irradiation; photodegradation; metal oxide nanoparticles; polymer weight loss; clotrimazole

向作者/读者索取更多资源

Poly(vinyl chloride) or PVC has functional properties that enable its use in many industrial applications. However, it suffers from aging in harsh conditions if oxygen is present. Blending PVC with metal oxide nanoparticles and clotrimazole can enhance its photostability and protect it against photodegradation.
Pol(vinyl chloride) or PVC has functional properties that enable its use in many industrial applications. It suffers from aging, however, in harsh conditions (e.g., elevated temperature or high humidity levels) if oxygen is present. One way to enhance the photostability of PVC is to blend it with additives. Thus, thin films were made by mixing PVC with clotrimazole, and five metal oxide (titanium, copper, cobalt, chromium, and nickel oxides) additives. The metal oxides and clotrimazole were added at concentrations of 0.1 and 0.5% by weight, respectively. The effect of the metal oxide nanoparticles accompanied by clotrimazole on the photodegradation of PVC was then assessed. The results indicated that the additives have a stabilizing effect and protect PVC against photodegradation significantly. The formation of polymeric fragments of small molecular weight containing carbon-carbon double bonds and carbonyl groups was lower in the blends containing metal oxide nanoparticles and clotrimazole than in unblended PVC. Similarly, the decrease in weight was much less for the films blended with additives. Additionally, surface analysis of the irradiated polymeric films showed significantly lower damage in the materials containing additives. The most effective additive in the stabilization of PVC was nickel oxide nanoparticles. The metal oxides are highly alkaline and act as scavengers for the hydrogen chloride produced during the photodegradation of PVC. They additionally act as peroxide decomposers. In contrast, clotrimazole can absorb harmful radiation and act as an ultraviolet absorber due to its heteroatom and aromatic content. Thus, the use of a combination of metal oxide nanoparticles and clotrimazole led to significant improvement in the resistance of PVC toward photodegradation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据