4.7 Article

Flexible Supercapacitors Based on Stretchable Conducting Polymer Electrodes

期刊

POLYMERS
卷 15, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/polym15081856

关键词

flexibility; conducting polymer; supercapacitors

向作者/读者索取更多资源

Supercapacitors, known for their high power density, fast charging and discharging speeds, and long service life, are widely used in various fields. However, the integration of supercapacitors in flexible electronics faces challenges regarding extensibility, bending stability, and operability. To address these challenges, we deposited thiophene and 3-methylthiophene on patterned 304 stainless steel through electropolymerization to prepare stretchable conducting polymer electrodes. Moreover, the cycling stability of the electrodes was improved by protecting them with a poly(vinyl alcohol)/sulfuric acid gel electrolyte. The assembled flexible supercapacitors exhibited 93% stability even after 10,000 cycles of strain, highlighting their potential applications in flexible electronics.
Supercapacitors are widely used in various fields due to their high power density, fast charging and discharging speeds, and long service life. However, with the increasing demand for flexible electronics, integrated supercapacitors in devices are also facing more challenges, such as extensibility, bending stability, and operability. Despite many reports on stretchable supercapacitors, challenges still exist in their preparation process, which involves multiple steps. Therefore, we prepared stretchable conducting polymer electrodes by depositing thiophene and 3-methylthiophene on patterned 304 stainless steel (SS 304) through electropolymerization. The cycling stability of the prepared stretchable electrodes could be further improved by protecting them with poly(vinyl alcohol)/sulfuric acid (PVA/H2SO4) gel electrolyte. Specifically, the mechanical stability of the polythiophene (PTh) electrode was improved by 2.5%, and the stability of the poly(3-methylthiophene (P3MeT) electrode was improved by 7.0%. As a result, the assembled flexible supercapacitors maintained 93% of their stability even after 10,000 cycles of strain at 100%, which indicates potential applications in flexible electronics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据