4.6 Article

CLOCK and TIMELESS regulate rhythmic occupancy of the BRAHMA chromatin-remodeling protein at clock gene promoters

期刊

PLOS GENETICS
卷 19, 期 2, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pgen.1010649

关键词

-

向作者/读者索取更多资源

The circadian clock and chromatin-remodeling complexes regulate rhythmic gene expression. BRM complex promotes the repression of circadian gene expression in Drosophila. Clock proteins CLK and TIM regulate BRM occupancy at clock gene promoters, with CLK enhancing BRM binding and TIM promoting BRM removal from DNA. Light also affects BRM binding to DNA. This study provides new insights into the reciprocal regulation between the circadian clock and the BRM chromatin-remodeling complex.
Circadian clock and chromatin-remodeling complexes are tightly intertwined systems that regulate rhythmic gene expression. The circadian clock promotes rhythmic expression, timely recruitment, and/or activation of chromatin remodelers, while chromatin remodelers regulate accessibility of clock transcription factors to the DNA to influence expression of clock genes. We previously reported that the BRAHMA (BRM) chromatin-remodeling complex promotes the repression of circadian gene expression in Drosophila. In this study, we investigated the mechanisms by which the circadian clock feeds back to modulate daily BRM activity. Using chromatin immunoprecipitation, we observed rhythmic BRM binding to clock gene promoters despite constitutive BRM protein expression, suggesting that factors other than protein abundance are responsible for rhythmic BRM occupancy at clock-controlled loci. Since we previously reported that BRM interacts with two key clock proteins, CLOCK (CLK) and TIMELESS (TIM), we examined their effect on BRM occupancy to the period (per) promoter. We observed reduced BRM binding to the DNA in clk null flies, suggesting that CLK is involved in enhancing BRM occupancy to initiate transcriptional repression at the conclusion of the activation phase. Additionally, we observed reduced BRM binding to the per promoter in flies overexpressing TIM, suggesting that TIM promotes BRM removal from DNA. These conclusions are further supported by elevated BRM binding to the per promoter in flies subjected to constant light and experiments in Drosophila tissue culture in which the levels of CLK and TIM are manipulated. In summary, this study provides new insights into the reciprocal regulation between the circadian clock and the BRM chromatin-remodeling complex. Author summaryCircadian clocks are endogenous time-keeping mechanisms that allow organisms to anticipate and adapt to daily changes in their external environment. These clocks are driven by a molecular oscillator that generates rhythms in the expression of many genes, termed clock-controlled genes. The genomic DNA containing these clock-controlled genes are also modified in a rhythmic manner throughout the day. DNA is more tightly packaged with histone proteins when transcription of clock-controlled genes is repressed while the interaction between DNA and histone proteins is more relaxed during transcriptional activation. We found that two key clock proteins, CLOCK and TIMELESS, regulate daily rhythmicity in the binding of BRAHMA, a chromatin remodeler, to DNA spanning clock-controlled genes to facilitate their rhythmic gene expression cycles. Moreover, because TIMELESS is sensitive to light, our study provides new insights into how light can affect DNA structure and gene expression.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据