4.6 Article

Acceleration of the Parameterization of Unified Microphysics Across Scales (PUMAS) on the Graphics Processing Unit (GPU) With Directive-Based Methods

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2022MS003515

关键词

GPU; OpenACC; OpenMP target offload; PUMAS; CAM

向作者/读者索取更多资源

In this study, the cloud microphysics parameterization in a climate model was ported from CPU to GPU for faster computation. The directive-based methods were found to be the best fit for the development practices and showed improved portability and maintainability. The experiments demonstrated that using GPU in climate simulations can significantly reduce computational costs.
Cloud microphysics is one of the most time-consuming components in a climate model. In this study, we port the cloud microphysics parameterization in the Community Atmosphere Model (CAM), known as Parameterization of Unified Microphysics Across Scales (PUMAS), from CPU to GPU to seek a computational speedup. The directive-based methods (OpenACC and OpenMP target offload) are determined as the best fit specifically for our development practices, which enable a single version of source code to run either on the CPU or GPU, and yield a better portability and maintainability. Their performance is first examined in a PUMAS stand-alone kernel and the directive-based methods can outperform a CPU node as long as there is enough computational burden on the GPU. A consistent behavior is observed when we run PUMAS on the GPU in a practical CAM simulation. A 3.6x speedup of the PUMAS execution time, including data movement between CPU and GPU, is achieved at a coarse horizontal resolution (8 NVIDIA V100 GPUs against 36 Intel Skylake CPU cores). This speedup further increases up to 5.4x at a high resolution (24 NVIDIA V100 GPUs against 108 Intel Skylake CPU cores), which highlights the fact that GPU favors larger problem size. This study demonstrates that using GPU in a CAM simulation can save noticeable computational costs even with a small portion of code being GPU-enabled. Therefore, we are encouraged to port more parameterizations to GPU to take advantage of its computational benefit.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据