4.6 Review

Fountain of youth-Targeting autophagy in aging

期刊

FRONTIERS IN AGING NEUROSCIENCE
卷 15, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fnagi.2023.1125739

关键词

autophagy; aging; rejuvenation; clinical trial; neurodegenerative diseases; direct reprogramming; autophagy-modifying drugs; disease modeling

向作者/读者索取更多资源

As society ages, research on geroscience and healthy aging becomes more urgent. Autophagy, a cellular clearance process, plays a crucial role in determining lifespan and health. Interventions that induce autophagy have shown significant lifespan extension in experimental models. However, autophagy in humans is more complex and clinical trials targeting autophagy have mixed results. The use of more human-relevant preclinical models could improve drug efficacy and clinical trial outcomes.
As our society ages inexorably, geroscience and research focusing on healthy aging is becoming increasingly urgent. Macroautophagy (referred to as autophagy), a highly conserved process of cellular clearance and rejuvenation has attracted much attention due to its universal role in organismal life and death. Growing evidence points to autophagy process as being one of the key players in the determination of lifespan and health. Autophagy inducing interventions show significant improvement in organismal lifespan demonstrated in several experimental models. In line with this, preclinical models of age-related neurodegenerative diseases demonstrate pathology modulating effect of autophagy induction, implicating its potential to treat such disorders. In humans this specific process seems to be more complex. Recent clinical trials of drugs targeting autophagy point out some beneficial effects for clinical use, although with limited effectiveness, while others fail to show any significant improvement. We propose that using more human-relevant preclinical models for testing drug efficacy would significantly improve clinical trial outcomes. Lastly, the review discusses the available cellular reprogramming techniques used to model neuronal autophagy and neurodegeneration while exploring the existing evidence of autophagy's role in aging and pathogenesis in human-derived in vitro models such as embryonic stem cells (ESCs), induced pluripotent stem cell derived neurons (iPSC-neurons) or induced neurons (iNs).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据