4.8 Article

p53-independent tumor suppression by cell-cycle arrest via CREB/ATF transcription factor OASIS

期刊

CELL REPORTS
卷 42, 期 5, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.celrep.2023.112479

关键词

-

向作者/读者索取更多资源

The CREB/ATF transcription factor OASIS/CREB3L1 is upregulated in long-term-cultured astrocytes undergoing cell-cycle arrest due to loss of DNA integrity by repeated replication. OASIS arrests the cell cycle at G2/M phase after DNA damage via direct induction of p21. OASIS may act as a tumor suppressor by inhibiting cell-cycle and its low expression due to promoter hypermethylation is observed in some glioma patients.
CREB/ATF transcription factor OASIS/CREB3L1 is upregulated in long-term-cultured astrocytes undergoing cell-cycle arrest due to loss of DNA integrity by repeated replication. However, the roles of OASIS in the cell cycle remain unexplored. We find that OASIS arrests the cell cycle at G2/M phase after DNA damage via direct induction of p21. Cell-cycle arrest by OASIS is dominant in astrocytes and osteoblasts, but not in fibroblasts, which are dependent on p53. In a brain injury model, Oasis-/- reactive astrocytes surrounding the lesion core show sustained growth and inhibition of cell-cycle arrest, resulting in prolonged gliosis. We find that some glioma patients exhibit low expression of OASIS due to high methylation of its promoter. Specific removal of this hypermethylation in glioblastomas transplanted into nude mice by epigenomic engineering sup-presses the tumorigenesis. These findings suggest OASIS as a critical cell-cycle inhibitor with potential to act as a tumor suppressor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据