4.8 Article

Assembly and disassembly dynamics of nonmuscle myosin II control endosomal fission

期刊

CELL REPORTS
卷 42, 期 2, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.celrep.2023.112108

关键词

-

向作者/读者索取更多资源

Endocytic vesicular trafficking requires the merging of two lipid bilayers, and the involvement of nonmuscle myosin IIs (NM IIs) in fusion and fission processes has been explored. Knocking down NM IIs or inhibiting their activities leads to the formation of ring-like assemblies of early endosomes (raEE). The assembly and disassembly dynamics of NM II play a role in regulating fission and maintaining the size of early endosomes.
Endocytic vesicular trafficking requires merging of two lipid bilayers, but how the two lipid bilayers can come close together during fusion and fission in endocytic trafficking is not well explored. Here, we establish that knocking down nonmuscle myosin IIs (NM IIs) by small interfering RNA (siRNA) or inhibition of their activities by (-) blebbistatin causes the formation of a ring-like assembly of early endosomes (raEE). Inhibition of NM II assembly by an inhibitor of regulatory light-chain (RLC) kinase results in the formation of raEE, whereas in-hibition of NM II disassembly by inhibitors of heavy chain kinases, protein kinase C (PKC) and casein kinase 2 (CK2), causes the dispersion of early endosomes. The raEEs retain EEA1, Rab7, and LAMP2 markers. Over -expression of an assembly incompetent form, RLC-AA, and disassembly incompetent form, NMHCIIB-S6A or NMHCIIA-1916A, induces such defects, respectively. Altogether, these data support that NM II assembly and disassembly dynamics participate in endocytic trafficking by regulating fission to maintain the size of early endosomes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据