4.6 Article

Protocol for the BONE-RECON trial: a single-arm feasibility trial for critical sized lower limb BONE defect RECONstruction using the mPCL-TCP scaffold system with autologous vascularised corticoperiosteal tissue transfer

期刊

BMJ OPEN
卷 13, 期 5, 页码 -

出版社

BMJ PUBLISHING GROUP
DOI: 10.1136/bmjopen-2021-056440

关键词

Limb reconstruction; Orthopaedic & trauma surgery; Plastic & reconstructive surgery

向作者/读者索取更多资源

This study evaluates the feasibility of using biodegradable scaffolds and the RMAV approach to treat critical-sized bone defects in the lower limb. The study will be conducted in Australia, and the participating patients will receive treatment using a custom mPCL-TCP scaffold. The primary endpoints are the safety and tolerability of the reconstruction, while secondary endpoints include time to bone union and weight-bearing status on the treated limb.
IntroductionReconstruction of critical bone defects is challenging. In a substantial subgroup of patients, conventional reconstructive techniques are insufficient. Biodegradable scaffolds have emerged as a novel tissue engineering strategy for critical-sized bone defect reconstruction. A corticoperiosteal flap integrates the hosts' ability to regenerate bone and permits the creation of a vascular axis for scaffold neo-vascularisation (regenerative matching axial vascularisation-RMAV). This phase IIa study evaluates the application of the RMAV approach alongside a custom medical-grade polycaprolactone-tricalcium phosphate (mPCL-TCP) scaffold (Osteopore) to regenerate bone sufficient to heal critical size defects in lower limb defects.Methods and analysisThis open-label, single-arm feasibility trial will be jointly coordinated by the Complex Lower Limb Clinic (CLLC) at the Princess Alexandra Hospital in Woolloongabba (Queensland, Australia), the Australian Centre for Complex Integrated Surgical Solutions (Queensland, Australia) and the Faculty of Engineering, Queensland University of Technology in Kelvin Grove (Queensland, Australia). Aiming for limb salvage, the study population (n=10) includes any patient referred to the CLLC with a critical-sized bone defect not amenable to conventional reconstructive approaches, after discussion by the interdisciplinary team. All patients will receive treatment using the RMAV approach using a custom mPCL-TCP implant. The primary study endpoint will be safety and tolerability of the reconstruction. Secondary end points include time to bone union and weight-bearing status on the treated limb. Results of this trial will help shape the role of scaffold-guided bone regenerative approaches in complex lower limb reconstruction where current options remain limited.Ethics and disseminationApproval was obtained from the Human Research Ethics Committee at the participating centre. Results will be submitted for publication in a peer-reviewed journal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据