4.7 Article

Constructing Spatiotemporally Controllable Biocatalytic Cascade in RBC Nanovesicles for Precise Tumor Therapy Based on Reversibly Induced Glucose Oxidase-Magnetoferritin Dimers

期刊

ADVANCED HEALTHCARE MATERIALS
卷 12, 期 21, 页码 -

出版社

WILEY
DOI: 10.1002/adhm.202300205

关键词

biocatalytic cascades; chemodynamic therapy; glucose oxidase; magnetoferritin; protein dimerization

向作者/读者索取更多资源

Magnetoferritin (M-HFn) and glucose oxidase (GOD) can form nanocomplexes, inhibiting enzyme activity. Red blood cell (RBC) nanovesicles are fabricated to inhibit the enzyme cascade during blood circulation and reactivate the cascade activity in the tumor site, providing a new approach for precise cancer therapy.
Chemodynamic therapy is a promising tumor treatment strategy. However, it remains a great challenge to overcome the unavoidable off-target damage to normal tissues. In this work, it is discovered that magnetoferritin (M-HFn, biomimic peroxidase) can form nanocomplexes with glucose oxidase (GOD) in the presence of glucose, thus inhibiting the enzyme activity of GOD. Interestingly, GOD&M-HFn (G-M) nanocomplexes can dissociate under near-infrared (NIR) laser, reactivating the enzyme cascade. Based on this new finding, a spatiotemporally controllable biocatalytic cascade in red blood cell (RBC) nanovesicles (G-M@RBC-A) is fabricated for precise tumor therapy, which in situ inhibits enzyme cascade between GOD and M-HFn during blood circulation and reactivates the cascade activity in tumor site by NIR laser irradiation. In RBC nanovesicles, GOD is grabbed by M-HFn to form G-M nanocomplexes in the presence of glucose, thus inhibiting the Fenton reaction and reducing side effects. However, after NIR laser irradiation, G-M nanocomplexes are spatiotemporally dissociated and the cascade activity is reactivated in the tumor site, initiating reactive oxygen species damage to cancer cells in vivo. Therefore, this work provides new insight into the fabrication of spatiotemporally controllable biocatalytic cascade for precise cancer therapy in the future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据