4.7 Article

Menstrual blood-derived endometrial stem cells alleviate neuroinflammation by modulating M1/M2 polarization in cell and rat Parkinson's disease models

期刊

STEM CELL RESEARCH & THERAPY
卷 14, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s13287-023-03330-7

关键词

Menstrual blood-derived endometrial stem cells; Parkinson's disease; M1; M2 neuroinflammation

向作者/读者索取更多资源

This study aimed to investigate the inhibitory effect of MenSCs on neuroinflammation in PD rats by regulating M1/M2 polarization and to explore the underlying mechanisms. The results showed that MenSCs could suppress microglia cell activation and decrease inflammation in vitro. After transplantation into PD rats, MenSCs improved motor function, reduced dopaminergic neuron loss, and down-regulated pro-inflammatory factors. Moreover, protein array and bioinformatic analysis revealed the biological processes and signal pathways involved in the factors secreted by MenSCs.
BackgroundNeuroinflammation is closely related to the development of Parkinson's disease (PD). Because of the extensive sources, non-invasive and periodical collection method, human menstrual blood-derived endometrial stem cells (MenSCs) have been explored as a promising tool for treatment of PD. This study aimed to investigate if MenSCs could inhibit neuroinflammation in PD rats by regulating M1/M2 polarization and to excavate the underlying mechanisms.MethodsMenSCs were co-cultured with 6-OHDA-exposed microglia cell lines. Then the morphology of microglia cells and the level of inflammatory factors were assessed by immunofluorescence and qRT-PCR. After MenSCs were transplanted into the brain of PD rats, animal motor function, the expression of tyrosine hydroxylase, and the level of inflammatory factors in the cerebrospinal fluid (CSF) and serum were detected to evaluate the therapeutic potential of MenSCs. Meanwhile, the expression of M1/M2 phenotype related genes was detected by qRT-PCR. One protein array kit containing 1000 kinds of factors was used to detect the protein components in the conditioned medium of MenSCs. Finally, bioinformatic analysis was performed to analyze the function of factors secreted by MenSCs and the signal pathways involved in.ResultsMenSCs could suppress 6-OHDA-induced microglia cell activation and significantly decrease inflammation in vitro. After transplantation into the brain of PD rats, MenSCs improved animal motor function, which was indicated by the increased movement distance, ambulatory episodes, exercise time on the rotarod, and less contralateral rotation. Additionally, MenSCs reduced the loss of dopaminergic neurons and down-regulated the level of pro-inflammatory factors in the CSF and serum. Moreover, q-PCR and WB results showed the transplantation of MenSCs significantly down-regulated the expression of M1 phenotype cell markers and meanwhile up-regulated the expression of M2 phenotype cell markers in the brain of PD rats. 176 biological processes including inflammatory response, negative regulation of apoptotic process, and microglial cell activation were enriched by GO-BP analysis. 58 signal pathways including PI3K/Akt and MAPK were enriched by KEGG analysis.ConclusionsIn conclusion, our results provide preliminary evidence for the anti-inflammation capacity of MenSCs by regulating M1/M2 polarization. We firstly demonstrated the biological process of factors secreted by MenSCs and the signal pathways involved in using protein array and bioinformatic analysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据