4.7 Article

Climate change decouples dominant tree species in African savannas

期刊

SCIENTIFIC REPORTS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-023-34550-9

关键词

-

向作者/读者索取更多资源

To understand the response of two dominant African savanna trees to climate changes, we examined their regeneration niche and adult tree distributions. We found that the distributional patterns of these trees were shifting and predicted future distributions under different climate change scenarios. Our results suggest that the species' ranges would shift toward cooler climates and suitable climate for both species would transition out of savannas and into grasslands. The idiosyncratic responses of these species to climate change are likely to have considerable cascading effects including the potential rearrangement of faunal communities.
To understand how two dominant African savanna trees will continue to respond to climate changes, we examined their regeneration niche and adult tree distributions. Specifically, we wanted to (1) determine if distributional patterns were shifting, (2) predict future distributions under different climate change scenarios and (3) evaluate the realism of predicted future distributions. We randomly placed 40 grids into 6 strata across a climate gradient in the kingdom of Eswatini. Within these grids, we sampled adult and seedling marula (Scelerocarya birrea) and knobthorn (Senegalia nigrecens) trees and used the data to model their abundance. Next, we quantified shifts in distributional patterns (e.g., expansion or contraction) by measuring the current and projected areas of overlap between seedling and adult trees. Finally, we predicted future distributions of abundance based on predicted climate conditions. We found knobthorn seedlings within a small portion of the adult distribution, suggesting it was unlikely to track climate changes. Alternatively, finding marula seedlings on and beyond one edge of the adult distribution, suggested its range would shift toward cooler climates. Predicted future distributions suggest suitable climate for both species would transition out of savannas and into grasslands. Future projections (2041-2070) appeared consistent with observed distributions of marula, but knobthorn predictions were unrealistic given the lack of evidence for regeneration outside of its current range. The idiosyncratic responses of these species to climate change are likely to decouple these keystone structures in the coming decades and are likely to have considerable cascading effects including the potential rearrangement of faunal communities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据