4.7 Article

Correlation between airborne pollen data and the risk of tick-borne encephalitis in northern Italy

期刊

SCIENTIFIC REPORTS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-023-35478-w

关键词

-

向作者/读者索取更多资源

The study found a 2-year time lag correlation between pollen load and the incidence of tick-borne encephalitis (TBE). Through research in the province of Trento, it was discovered that the pollen load of two tree species was positively correlated with TBE incidence. This is the first attempt to quantify the correlation between pollen load and TBE incidence, suggesting the potential of pollen load as an early warning system for TBE and other tick-borne diseases.
Tick-borne encephalitis (TBE) is caused by a flavivirus that infects animals including humans. In Europe, the TBE virus circulates enzootically in natural foci among ticks and rodent hosts. The abundance of ticks depends on the abundance of rodent hosts, which in turn depends on the availability of food resources, such as tree seeds. Trees can exhibit large inter-annual fluctuations in seed production (masting), which influences the abundance of rodents the following year, and the abundance of nymphal ticks two years later. Thus, the biology of this system predicts a 2-year time lag between masting and the incidence of tick-borne diseases such as TBE. As airborne pollen abundance is related to masting, we investigated whether inter-annual variation in pollen load could be directly correlated with inter-annual variation in the incidence of TBE in human populations with a 2-year time lag. We focused our study on the province of Trento (northern Italy), where 206 TBE cases were notified between 1992 and 2020. We tested the relationship between TBE incidence and pollen load collected from 1989 to 2020 for 7 different tree species common in our study area. Through univariate analysis we found that the pollen quantities recorded two years prior for two tree species, hop-hornbeam (Ostrya carpinifolia) and downy oak (Quercus pubescens), were positively correlated with TBE emergence (R-2=0.2) while a multivariate model with both tree species better explained the variation in annual TBE incidence (R-2=0.34). To the best of our knowledge, this is the first attempt at quantifying the correlation between pollen quantities and the incidence of TBE in human populations. As pollen loads are collected by widespread aerobiological networks using standardized procedures, our study could be easily replicated to test their potential as early warning system for TBE and other tick-borne diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据