4.7 Article

Stochastic gradient descent for optimization for nuclear systems

期刊

SCIENTIFIC REPORTS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-023-32112-7

关键词

-

向作者/读者索取更多资源

This analysis investigates the suitability of ADAM as a tool for optimizing k-eigenvalue nuclear systems, using challenge problems to verify its effectiveness. Despite the stochastic nature and uncertainty of k-eigenvalue problems, ADAM is able to successfully optimize nuclear systems. Furthermore, the results clearly demonstrate that low-compute time, high-variance estimates of the gradient lead to better performance in the optimization challenge problems tested here.
The use of gradient descent methods for optimizing k-eigenvalue nuclear systems has been shown to be useful in the past, but the use of k-eigenvalue gradients have proved computationally challenging due to their stochastic nature. ADAM is a gradient descent method that accounts for gradients with a stochastic nature. This analysis uses challenge problems constructed to verify if ADAM is a suitable tool to optimize k-eigenvalue nuclear systems. ADAM is able to successfully optimize nuclear systems using the gradients of k-eigenvalue problems despite their stochastic nature and uncertainty. Furthermore, it is clearly demonstrated that low-compute time, high-variance estimates of the gradient lead to better performance in the optimization challenge problems tested here.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据