4.7 Article

Measurements of tendon length changes during stretch-shortening cycles in rat soleus

期刊

SCIENTIFIC REPORTS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-023-32370-5

关键词

-

向作者/读者索取更多资源

The study aimed to clarify the influence of tendon elongation on the stretch-shortening cycle (SSC) effect by directly measuring changes in Achilles tendon length. The results showed that the SSC effect was observed, indicating that muscle force during concentric contraction was increased after a preceding eccentric contraction. However, the changes in tendon length were not different between trials, suggesting that other factors may contribute to the SSC effect.
The muscle force attained during concentric contractions is augmented by a preceding eccentric contraction (the stretch-shortening cycle (SSC) effect). At present, tendon elongation is considered the primary mechanism. However, we recently found that the magnitude of the SSC effect was not different, even after removing the Achilles tendon. To resolve these discrepant results, direct measurement of changes in Achille tendon length is required. Therefore, this study aimed to elucidate the influence of tendon elongation on the SSC effect by directly measuring the changes in Achilles tendon length. The rat soleus was subjected to pure concentric contractions (pure shortening trials) and concentric contractions with a preceding eccentric contraction (SSC trials). During these contractions, the Achilles tendon length was visualized using a video camera. The muscle force attained during the concentric contraction phase in the SSC trial was significantly larger than that in the pure shortening trial (p = 0.022), indicating the existence of the SSC effect. However, the changes in Achilles tendon length were not different between trials (i.e., the magnitude of tendon shortening attained during the shortening phase was 0.20 +/- 0.14 mm for the SSC trial vs. 0.17 +/- 0.09 mm for the pure shortening trial), indicating that the observed SSC effect is difficult to be explained by the elastic energy stored in tendons or muscle-tendon interaction. In conclusion, the effect of tendon elongation on the SSC effect should be reconsidered, and other factors may contribute to the SSC effect.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据