4.7 Article

Precise measurement for line structure light vision sensor with large range

期刊

SCIENTIFIC REPORTS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-023-34428-w

关键词

-

向作者/读者索取更多资源

This paper proposes a precise measurement method and corresponding calibration procedure for a line structure light vision sensor with a large measurement range. By utilizing a linear translation stage and planar target, the relationship between the center point of the laser stripe and the perpendicular/horizontal distance is obtained. The proposed method eliminates the need for distortion compensation and significantly improves measurement precision.
High precision and large measurement range are the target of any one three-dimensional scanner. For a line structure light vision sensor, measurement precision depends on its calibration results, i.e., determining mathematical expression of the light plane in camera coordinate system. However, as calibration results are locally optimal solutions, high precise measurement in a large range is difficult. In this paper, we give a precise measurement method and the corresponding calibration procedure for a line structure light vision sensor with a large measurement range. A motorized linear translation stages with a travel range of 150 mm and a planar target which is a surface plate with a machining precision of 0.05 mm are utilized. With the help of the linear translation stage and the planar target, functions which gives the relationship between center point of the laser stripe and the perpendicular/ horizontal distance are obtained. Once image of light stripe is captured, we can get a precise measurement result from the normalized feature points. Compared with a traditional measurement method, distortion compensation is not necessary and precision of measurement is improved significantly. Experiments show that root mean square error of measurement results according to our proposed method is reduced by 64.67% related to the traditional method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据