4.7 Article

Increasing the melting temperature of VHH with the in silico free energy score

期刊

SCIENTIFIC REPORTS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-023-32022-8

关键词

-

向作者/读者索取更多资源

In this study, a computational method was used to design mutants with improved melting temperature (Tm) by calculating the free energy score. The results showed that this method significantly increased the Tm of single mutants while almost maintaining the affinity for the antigen. However, achieving both higher Tm and preserved affinity is extremely difficult, and it is recommended to use multiple approaches when designing antibody mutants.
VHH, the antigen-binding fragment of a heavy chain-only antibody, is a useful component of antibody-based therapeutics. Thermal stability, represented by the melting temperature (Tm), is one of the key factors affecting the developability of antibody-based therapeutics. In this study, we examined whether the in silico free energy score dStability can be used to design mutants with improved Tm compared to the anti-lysozyme VHH, D3-L11. After verifying that exhaustive mutagenesis was inefficient for improving Tm, we performed a two-round rational approach that combined dStability calculations with a small number of experiments. This method improved the Tm by more than 5 & DEG;C in several single mutants including A79I. It reduced the affinity for the antigen by less than 1.6-fold. We speculate that stabilization of A79I required exquisite compatibility among neighboring residues to fill in the internal cavity in the protein. Given that we identified only one mutation that could simultaneously improve Tm and almost maintain affinity, we concluded that achieving both is extremely difficult, even with single mutations that are not located in the paratope. Therefore, we recommend using a variety of approaches when trying to achieve such a feat. Our method will be a useful complementary approach to other existing methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据