4.7 Article

A portable, programmable, multichannel stimulator with high compliance voltage for noninvasive neural stimulation of motor and sensory nerves in humans

期刊

SCIENTIFIC REPORTS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-023-30545-8

关键词

-

向作者/读者索取更多资源

Most neural stimulators lack the compliance voltage required for transcutaneous stimulation, whereas few high compliance voltage stimulators are bulky and not portable. To overcome this, a portable, programmable, multichannel, noninvasive neural stimulator has been designed and validated, capable of generating custom bipolar waveforms at +/-150V with high temporal resolution. The stimulator has been tested on a benchtop and a healthy population, proving its effectiveness for sensory and motor stimulation. This development and validation offer an important advancement in the accessibility and use of neural stimulation for education and research.
Most neural stimulators do not have a high enough compliance voltage to pass current through the skin. The few stimulators that meet the high compliance voltage necessary for transcutaneous stimulation are typically large benchtop units that are not portable, and the stimulation waveforms cannot be readily customized. To address this, we present the design and validation of a portable, programmable, multichannel, noninvasive neural stimulator that can generate three custom bipolar waveforms at +/- 150 V with microsecond temporal resolution. The design is low-cost, open-source, and validated on the benchtop and with a healthy population to demonstrate its functionality for sensory and motor stimulation. Sensory stimulation included electrocutaneous stimulation targeting cutaneous mechanoreceptors at the surface of the skin and transcutaneous nerve stimulation targeting the median nerve at the wrist. Both electrocutaneous stimulation on the hand and transcutaneous stimulation at the wrist can elicit isolated tactile percepts on the hand but changes in pulse frequency are more discriminable for electrocutaneous stimulation. Also, neuromuscular electrical stimulation of the flexor digiti profundus is evoked by applying electrical stimulation directly above the muscle in the forearm and to the median and ulnar nerves in the upper arm. Muscle and nerve stimulation evoked similar grip forces and force rise times, but nerve stimulation had a significantly slower fatigue rate. The development and validation of this noninvasive stimulator and direct comparison of common sensory and motor stimulation targets in a human population constitute an important step towards more widespread use and accessibility of neural stimulation for education and research.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据