4.7 Article

Management of mung bean leaf spot disease caused by Phoma herbarum through Penicillium janczewskii metabolites mediated by MAPK signaling cascade

期刊

SCIENTIFIC REPORTS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-023-30709-6

关键词

-

向作者/读者索取更多资源

Vigna radiata L., an important legume crop in Pakistan, suffers from fungal damage. The use of natural compounds to manage mung-bean fungal diseases is an innovative approach. Aqueous culture filtrates of Penicillium species were evaluated for their antagonistic effect on Phoma herbarum, and P. janczewskii showed the most significant inhibition. Furthermore, the metabolites of P. janczewskii were found to have a suppressive effect on the transcript level of the StSTE12 gene involved in appressorium development. The study highlights the strong fungicidal potential of Penicillium species against P. herbarum and suggests further analysis to isolate effective fungicidal constituents.
Vigna radiata L., an imperative legume crop of Pakistan, faces hordes of damage due to fungi; infecting host tissues by the appressorium. The use of natural compounds is an innovative concern to manage mung-bean fungal diseases. The bioactive secondary metabolites of Penicillium species are well documented for their strong fungi-static ability against many pathogens. Presently, one-month-old aqueous culture filtrates of Penicillium janczewskii, P. digitatum, P. verrucosum, P. crustosum, and P. oxalicum were evaluated to check the antagonistic effect of different dilutions (0, 10, 20, horizontal ellipsis and 60%). There was a significant reduction of around 7-38%, 46-57%, 46-58%, 27-68%, and 21-51% in Phoma herbarum dry biomass production due to P. janczewskii, P. digitatum, P. verrucosum, P. crustosum, and P. oxalicum, respectively. Inhibition constants determined by a regression equation demonstrated the most significant inhibition by P. janczewskii. Finally, using real-time reverse transcription PCR (qPCR) the effect of P. Janczewskii metabolites was determined on the transcript level of StSTE12 gene involved in the development and penetration of appressorium. The expression pattern of the StSTE12 gene was determined by percent Knockdown (%KD) expression that was found to be decreased i.e. 51.47, 43.22, 40.67, 38.01, 35.97, and 33.41% for P. herbarum with an increase in metabolites concentrations viz., 10, 20, 30, 40, 50 and 60% metabolites, respectively. In silico studies were conducted to analyze the role of Ste12 a transcriptional factor in the MAPK signaling pathway. The present study concludes a strong fungicidal potential of Penicillium species against P. herbarum. Further studies to isolate the effective fungicidal constituents of Penicillium species through GCMS analysis and determination of their role in signaling pathways are requisite.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据