4.7 Article

Structural optimisation for controlled deflections of additively manufactured single material beams

期刊

SCIENTIFIC REPORTS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-023-33946-x

关键词

-

向作者/读者索取更多资源

This study proposes a novel cellular structured solution to achieve beam deflection profiles closely matched with preset conditions under different loading conditions. The optimal structure of the cells is continually searched and converged upon by altering the cellular geometry iteratively using the covariance matrix adaptation evolution strategy algorithm. The optimized beam structures can be physically produced with single material additive manufacturing methods, and the experimental and numerical beam deflection responses closely correlate.
Closely controlling the mechanical behaviour and characterization of the deflection of a beam structure is a well-known and widely studied engineering problem. The progress in additive manufacturing methods and the possibilities to closely control the material property variations with the controlled placement of materials further widen the opportunities to achieve given beam deflection criteria. The multi-material additive manufacturing solutions suffer from the lack of real engineering material options, and the quality and performance of the printed parts are usually unsuitable for producing functional parts. A novel cellular structured solution is proposed here, which utilises optimisation of geometries of individual cells of a single material structured beam to obtain deflection profiles closely matched with preset conditions under different loading conditions. The cellular geometry of the structured beam is continually altered for searching and converging on the optimal structure of the cells by the covariance matrix adaptation evolution strategy algorithm in an iterative manner. The optimised beam structures could also be physically produced with single material additive manufacturing methods and the experimental and numerical beam deflection responses correlated closely.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据