4.7 Article

Optimizing the operation strategy of a combined cooling, heating and power system based on energy storage technology

期刊

SCIENTIFIC REPORTS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-023-29938-6

关键词

-

向作者/读者索取更多资源

This paper aims to enhance the overall performance of the CCHP-GSHP system by using a battery to propose a new operation strategy. The power generation unit has two modes, non-operation and rated efficiency operation, controlled by the storage electricity battery. Compared with the traditional CCHP-GSHP system without a battery, the new operation strategy yields better performance.
Energy storage technology is the key to achieving a carbon emission policy. The purpose of the paper is to improve the overall performance of the combined cooling, heating and power-ground source heat pump (CCHP-GSHP) system by the battery. A new operation strategy (the two-point operation) is proposed by controlling the power generation unit work. The power generation unit has two operation modes of non-operation and rated efficiency operation by the storage electricity battery. The new operation strategy is compared with the traditional CCHP-GSHP that without a battery. The optimization goals include the primary energy saving ratio, the reduction ratio of carbon dioxide emissions, and the annual total cost saving ratio. The independent GSHP system is used as a reference system. Multipopulation genetic algorithms are selected to achieve the problem of optimization. A hotel building is selected for a case study. The optimal configuration of the coupling system is computed following the electric load strategy. Finally, the results show that the CCHP-GSHP system has a better performance under the new operation strategy compared with the traditional CCHP-GSHP (the primary energy saving ratio increases by 5.5%; the annual carbon dioxide emission reduction ratio increases by 1%; the annual total cost reduction ratio increases by 5.1%). This paper provides reference and suggestions for the integration and operation strategy of CCHP-GSHP in the future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据