4.7 Article

Residue-specific binding of Ni(II) ions influences the structure and aggregation of amyloid beta (A beta) peptides

期刊

SCIENTIFIC REPORTS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-023-29901-5

关键词

-

向作者/读者索取更多资源

Alzheimer's disease is the most common cause of dementia worldwide. It is characterized by the presence of insoluble amyloid plaques in the brain, mainly composed of aggregated amyloid-beta (A beta) peptides. Metal homeostasis is altered in AD, and elevated levels of metals such as Cu, Fe, and Zn have been observed in AD plaques. However, the role of metal ions, such as Ni(II), in AD pathology remains unclear.
Alzheimer's disease (AD) is the most common cause of dementia worldwide. AD brains display deposits of insoluble amyloid plaques consisting mainly of aggregated amyloid-beta (A beta) peptides, and A beta oligomers are likely a toxic species in AD pathology. AD patients display altered metal homeostasis, and AD plaques show elevated concentrations of metals such as Cu, Fe, and Zn. Yet, the metal chemistry in AD pathology remains unclear. Ni(II) ions are known to interact with A beta peptides, but the nature and effects of such interactions are unknown. Here, we use numerous biophysical methods-mainly spectroscopy and imaging techniques-to characterize A beta/Ni(II) interactions in vitro, for different A beta variants: A beta(1-40), A beta(1-40)(H6A, H13A, H14A), A beta(4-40), and A beta(1-42). We show for the first time that Ni(II) ions display specific binding to the N-terminal segment of full-length A beta monomers. Equimolar amounts of Ni(II) ions retard A beta aggregation and direct it towards non-structured aggregates. The His6, His13, and His14 residues are implicated as binding ligands, and the Ni(II)center dot A beta binding affinity is in the low mu M range. The redox-active Ni(II) ions induce formation of dityrosine cross-links via redox chemistry, thereby creating covalent A beta dimers. In aqueous buffer Ni(II) ions promote formation of beta sheet structure in A beta monomers, while in a membrane-mimicking environment (SDS micelles) coil-coil helix interactions appear to be induced. For SDS-stabilized A beta oligomers, Ni(II) ions direct the oligomers towards larger sizes and more diverse (heterogeneous) populations. All of these structural rearrangements may be relevant for the A beta aggregation processes that are involved in AD brain pathology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据