4.7 Article

Mass flow and consumption calculations of pharmaceuticals in sewage treatment plant with emphasis on the fate and risk quotient assessment

期刊

SCIENTIFIC REPORTS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-023-30477-3

关键词

-

向作者/读者索取更多资源

In Egypt, the consumption of pharmaceuticals has greatly increased due to population growth and unrestricted sales. A study was conducted on the occurrence and fate of common pharmaceutical active compounds (PhACs) at a sewage treatment plant in Giza, Egypt. The levels of PhACs were monitored throughout different treatment stages and in dewatered sludge. The results showed that biodegradation and adsorption were the main removal mechanisms for the studied PhACs.
In Egypt, pharmaceuticals consumption increased dramatically owing to the population growth and the unrestricted sale manner. Accordingly, the occurrence and fate of nine common pharmaceutical active compounds (PhACs) were scrutinized at a sewage treatment plant (STP) in Giza, Egypt. The levels of these PhACs were assessed in different the wastewater treatment stages and dewatered sludge phase using high-performance liquid chromatography coupled with photodiode arrays detector. The average concentrations of the total PhACs detected in influent, primary sedimentation effluent (PSE) and final effluent (FE) were 227, 155 and 89 mu g L-1, respectively. The overall removal efficiency of the individual PhACs ranged from 18 to 72% removal. The occurrence trend revealed that biodegradation and adsorption are the concurrently removal mechanisms of the studied PhACs. The overall consumption per day in West of Greater Cairo was estimated based on influent concentration of STP. Sulfamethoxazole, paracetamol and diclofenac were detected with the highest levels in the influent of STP, PSE and FE as well as in the dewatered sludge. Furthermore, the high concentrations of these compounds in the sludge confirm the adsorption pathway removal of theses PhACs. The risk quotient (RQ) assessment for the detected PhACs in FE is greatly higher than the predicted non-effect concentration (PNEC). Conclusively, the FE of STP is considered a risky source for PhACs in adjacent surface water.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据