4.7 Article

Preparation and evaluation of some nanocarbon (NC) based composites for optoelectronic applications

期刊

SCIENTIFIC REPORTS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-023-35754-9

关键词

-

向作者/读者索取更多资源

PANI/NC nanocomposites were synthesized by in situ polymerization of aniline monomer in the presence of a stable colloidal solution of nanocarbon NC using ammonium persulfate and Ag+ ions. The morphological studies of the nanocomposites were conducted using TEM and SEM. Characterization of the prepared nanocomposites was further performed using various techniques including IR, XRD, XPS, PSD, FM, UV-VIS spectroscopy, and surface analysis. The nanocomposites showed superior optical and electrical properties, with AC conductivity reaching 1.06 x 10(-2) S.Cm-1 for PANI/NC and 2.5 x 10(-2) S.Cm-1 for PANI/NC/Ag2O. These new nanocomposites have not been reported in the literature before.
Polyaniline/nanocarbon (PANI/NC) nanocomposites have been prepared by in situ polymerization of aniline monomer in the presence of a stable colloidal solution of nanocarbon NC using ammonium persulfate as an initiator and silver ions (Ag+) as oxidizing agents to produce PANI/NC and PANI/NC/Ag2O nanocomposites, respectively. The morphological studies of the formed nanocomposites have been elucidated via transmission and scanning electron microscopes (TEM and SEM). Further characterization of the prepared nanocomposites has been done via infrared spectroscopy (IR), X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), particle size distribution analysis (PSD), fluorescence microscope (FM), UV-VIS spectroscopy, and finally surface analysis. XRD results confirmed the presence of silver oxide Ag2O nanoparticles, and the obtained data is well matched with the JCPDS card number 76-1393 of silver oxide. XPS analyses have shown two prevailing characteristic peaks for Ag 3d5/2 and Ag 3d3/2 at 367.1 and 373 eV, respectively, representing Ag2O nanoparticles, which are matchable with the XRD analysis. The PSD analysis revealed that the sizes of the prepared nanocomposites are in the size range from 60 to 140 nm. The FM measurements showed luminescence from the prepared nanocomposites upon irradiation with different lights. This recommends that the fluorophores present in the prepared nanocomposites have the potential to both absorb and emit light. The AC conductivity and the dielectric permittivity of the obtained nanocomposites at room temperature and at different frequency ranges have been investigated. At higher frequency ranges, the maximum ac conductivity obtained was 1.06 x 10(-2) and 2.5 x 10(-2) S.Cm-1 for the PANI/NC and PANI/NC/Ag2O, respectively. As far as we know, these new nanocomposites with superior optical and electrical characteristics have not been described yet in the literature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据