4.7 Article

Astrocytes actively support long-range molecular clock synchronization of segregated neuronal populations

期刊

SCIENTIFIC REPORTS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-023-31966-1

关键词

-

向作者/读者索取更多资源

In mammals, the suprachiasmatic nucleus (SCN) is the master regulator of circadian rhythms, synchronizing clocks in the central nervous system and periphery. The mechanisms behind how these clocks are effectively synchronized are not well understood. This study investigated the involvement of astrocytes and neuronal paracrine factors in clock synchronization. The findings revealed that both pathways play a role, with astrocytes acting as active cells in distributing long-range signals to synchronize brain clocks.
In mammals, the suprachiasmatic nucleus of the hypothalamus is the master circadian pacemaker that synchronizes the clocks in the central nervous system and periphery, thus orchestrating rhythms throughout the body. However, little is known about how so many cellular clocks within and across brain circuits can be effectively synchronized. In this work, we investigated the implication of two possible pathways: (i) astrocytes-mediated synchronization and (ii) neuronal paracrine factors-mediated synchronization. By taking advantage of a lab-on-a-chip microfluidic device developed in our laboratory, here we report that both pathways are involved. We found the paracrine factors-mediated synchronization of molecular clocks is diffusion-limited and, in our device, effective only in case of a short distance between neuronal populations. Interestingly, interconnecting astrocytes define an active signaling channel that can synchronize molecular clocks of neuronal populations also at longer distances. At mechanism level, we found that astrocytes-mediated synchronization involves both GABA and glutamate, while neuronal paracrine factors-mediated synchronization occurs through GABA signaling. These findings identify a previously unknown role of astrocytes as active cells that might distribute long-range signals to synchronize the brain clocks, thus further strengthening the importance of reciprocal interactions between glial and neuronal cells in the context of circadian circuitry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据